Kinetics of osmium(VIII) catalyzed oxidation of allyl alcohol by potassium bromate in aqueous acidic medium-autocatalysis in catalysis

Author(s):  
S. M. Desai ◽  
N. N. Halligudi ◽  
S. T. Nandibewoor
2008 ◽  
Vol 33 (6) ◽  
pp. 791-795 ◽  
Author(s):  
Praveen K. Tandon ◽  
Manisha Purwar ◽  
Priy B. Dwivedi ◽  
Manish Srivastava

1972 ◽  
Vol 27 (10) ◽  
pp. 1161-1163 ◽  
Author(s):  
S. P. Mushran ◽  
R. Sanehi ◽  
M. C. Agraval

The Osmium (VIII) catalyzed oxidation of acetone and ethylmethyl ketone by chloramine-T, in highly alkaline solutions showed first order dependence to chloramine-T and osmium (VIII). The order of the reactions with respect to alkali and ketone were found to be fractional, being ~-0.82 and 0.3 respectively. No effects of ionic strength were evident. The mechanism has been proposed on the basis of the formation of a complex between N-chlorotoluene-p-sulfonamide and osmium (VIII) in the slow step, which in turn oxidizes the enol anion of the reducing substrate in the fast step.During the study of the mechanism of oxidations by chloramine-T, the kinetics of the oxidation of α-hydroxy acids 1 in presence of osmium (VIII) as catalyst, glycerol2 in neutral and alkaline media, p-cresol3 in an acidic medium, hexacyanoferrate (II)4 in a feebly acidic medium (pH 6-7) and aliphatic aldehydes 5 in alkaline media have been investigated.Despite the high redox potential6 of the chloramine-T/toluene sulfonamide system (1.138 V at pH 12), the oxidation of acetone does not take place in absence of catalyst and that of ethylmethyl ketone proceeds only in highly alkaline solutions7 (NaOH>0.01 M). In the present note the kinetics of the osmium (VIII) catalyzed oxidation of acetone and ethylmethyl ketone have been recorded.


2014 ◽  
Vol 2014 ◽  
pp. 1-4
Author(s):  
B. Myek ◽  
S. O. Idris ◽  
J. F. Iyun

The kinetics of the oxidation of naphthol green B (NGB3−) by peroxydisulphate ion has been carried out in aqueous acidic medium at λmax of 700 nm, T=23±1°C, and I=0.50 mol dm−3 (NaCl). The reaction shows a first-order dependence on oxidant and reductant concentration, respectively. The stoichiometry of the NGB—S2O82- reaction is 1 : 2. Change in hydrogen ions concentration of the reaction medium has no effect on the rate of the reaction. Added cations and anions decreased the rate of the reaction. The results of spectroscopic and kinetic investigation indicate that no intermediate complex is probably formed in the course of this reaction.


2011 ◽  
Vol 8 (4) ◽  
pp. 1472-1477
Author(s):  
N. M. I. Alhaji ◽  
S. Sofiya Lawrence Mary

The kinetics of oxidation of glutamic acid (Glu) withN-bromophthalimide (NBP) was studied in perchloric acid medium at 30°C by potentiometric method. The reaction is first order each in NBP and glutamic acid and is negative fractional order in [H+]. Addition of KBr or the reaction product, phthalimide had no effect on the rate. Similarly variation of ionic strength of the medium did not affect the rate of the reaction. Also the rate increased with decrease in dielectric constant of the reaction medium. The thermodynamic parameters were computed from Arrhenius and Eyring plots. A suitable mechanism consistent with the kinetic results has been proposed.


Sign in / Sign up

Export Citation Format

Share Document